
Faraday's Law

 $\begin{array}{c}
 \text{Voltage} \\
 \text{generated} \\
 \end{array} = -N \frac{\Delta \text{ (BA)}}{\Delta \text{ t}}$

"B" is the average magnetic field "A" is area

"BA" is usually in units of "Teslas", T
"Δt" is "change in time", in seconds.

- Example 1: If the magnet has a field strength of .4 Teslas, and if it approaches the coil in 1 second, an N is 5 turns of wire, then Vgen = .004 volts.
- Example 2: If the magnet has a field strength of .4 Teslas, and if it approaches the coil in .001 second, an N is 5 turns of wire, then Vgen = 4 volts.
- Example 3: If the magnet has a field strength of .4 Teslas, and if it approaches the coil in .000001 second, an N is 5 turns of wire, then Vgen = 4000 volts.
- Key Concepts: 1) The faster the change in the field, the higher the induced voltage. As ∆t approaches ZERO, the induced voltage will approach INFINITY.
 - 2) The direction of the field strength change does not matter....the field can be INCREASING or DECREASING; only the polarity of the induced voltage will change.
 - 3) This also works in reverse: APPLYING a voltage to a coil of wire will produce a magnetic field. (The speed of the field strength increase depends on N, the number of turns, and the inductance of the core.)

MagnetoFunctions.dwg